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Abstract

Thermo-elastic damping is the dominant mode of energy loss due to the coupling of thermal and elastic fields in a body

vibrating at or near resonant frequency. While the literature contains both exact and numerical schemes to quantify it, no

technique is available yet to reduce thermo-elastic damping. We address this issue by introducing a secondary elastic field

to derive an exact expression that predicts linear reduction in thermo-elastic damping with respect to frequency. Contrary

to the current understanding, introduction of a static axial stress in addition to the flexural stresses is shown to increase

quality factor and resonant frequency simultaneously.

r 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Deformation in a body changes its heat content, giving rise to the coupling of elastic and thermal fields. At
or near resonant frequency, the coupling results in appreciable temperature gradient in the body, causing
energy loss through irreversible heat flow. Known as thermo-elastic damping, it is the dominant energy loss
mode that lowers the quality factor. Due to its significance in micro- and nano-resonator applications,
attempts have been made to quantify it in terms of physical properties. Zener’s [1–4] approximate expression
for thermo-elastic damping was first known attempt to quantify the thermo-elastic damping using anelastic
solid model. Recently, Lifshitz and Roukes [5] developed an exact expression for thermo-elastic damping that
also predicts increase in thermo-elastic damping with increase in natural frequency of vibration. Other
schemes for quantification of thermo-elastic damping involve non-Fourier heat diffusion equation [6], solution
of the coupled thermo-elasticity equations [7] and using eigenvalues and eigenvectors of uncoupled thermal
and elastic equations [7,8]. For complicated geometry, these different approaches can be implemented using
commercially available Finite Element solver [7]. It is important to note that the widely accepted
Lifshitz–Roukes model does not have dimension or size effects explicitly, which makes it inadequate for
device design purposes [9,10].
ee front matter r 2008 Elsevier Ltd. All rights reserved.
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While the above-mentioned techniques can be used to quantify thermo-elastic damping, there is no
technique available in the literature that reduces the losses. Miniaturization makes it worse because as the size
of the beam is reduced its natural frequency increases, and thermo-elastic damping also increases in the
process. To the best of our knowledge, there is no model available in the literature that can reduce thermo-
elastic damping, a reason why it is dubbed as a fundamental loss mechanism. In this brief communication, we
solve this problem by modeling, for the first time, a secondary elastic field to modify the thermo-elastic
coupling to reduce the thermo-elastic damping. A simple implementation of this scheme is to apply a static
stress field in the resonator. It is known that for flexural resonator, such axial stress increases natural
frequency of beams [11–13], which in turn, is expected to increase the thermo-elastic damping. We analytically
show that to the contrary, Q-factor and resonance frequency can be increased simultaneously. The premise for
our analytical model is recent experimental studies on nano-mechanical resonators that suggest an increase in
the quality factor with application of tensile stress [14,15].
2. Mathematical formulation

We modify the Lifshitz–Roukes thermo-elastic damping model by introducing static axial stress in a flexural
resonator with length l, width b, depth d and moment of inertia I. Deformation due to applied axial force F

will result in change in temperature which negligible at isothermal or adiabatic conditions. If T0 is the
equilibrium temperature of the beam, flexural displacement w(x, y, z, t) will result in temperature field
T ¼ T0+y, which is introduced to the constitutive relationship as

sxx ¼ s0 � Ey
q2w
qx2
� Eay, (1)

where s0 is stress due to applied axial force and a is coefficient of thermal expansion and E is the Young’s
modulus. The equation of motion for flexural vibration is then

q2

qx2
EI

q2w
qx2
þ EaIT � Fw

� �
þ rA

q2w

qt2
¼ 0, (2)

where IT is thermal moment of inertia. The heat diffusion equation with thermo-elastic damping is given as

1þ 2DE
1þ n
1� 2n

� �
qy
qt
¼ w

q2y
qy2
þ y

DE

a
q
qt

q2w

qx2
, (3)

where DE ¼ Ea2T=C, w is solid’s thermal diffusivity and C is volumetric heat capacity. Now neglecting the DE

term on the left side and assuming the solution for coupled thermo-elastic equations, we get, the temperature
profile to be

y0ðx; yÞ ¼
DE

a
d2W

dx2
y�

sinðkyÞ

k cosðdk=2Þ

� �
, (4a)

k ¼ ð1þ iÞ

ffiffiffiffiffiffi
on

2w

r
. (4b)

Utilizing the temperature profile, thermal moment of inertia is calculated and the beam vibration equation
can be expressed as

EoI
d4W

dx4
� F

d2W

dx2
þ rAo2W ¼ 0, (5)

where

Eo ¼ E½1þ DEð1þ f ðonÞÞ�
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and

f ðonÞ ¼
24

d3k3

dk

2
� tan

dk

2

� �� �
. (6)

Solving equation of motion by assuming boundary conditions to be simply supported, real and imaginary
part of first natural frequency are given as

ReðoÞ ¼ on 1þ
DE=2

1þ ðF=F crÞ
1þ

sinðxÞ � sinhðxÞ
cosðxÞ þ coshðxÞ

� �� �
, (7a)

ImðoÞ ¼ on

DE=2

1þ ðF=F crÞ

6

x3
sinðxÞ þ sinhðxÞ
cosðxÞ þ coshðxÞ

�
6

x2

� �
, (7b)

where x ¼ d
ffiffiffiffiffiffiffiffiffiffiffiffiffi
on=2w

p
.

Now quality factor (Q) is defined as

Q�1 ¼ 2
ImðoÞ
ReðoÞ

����
����. (8)

Neglecting DE term in real part results in damping to be expressed as

Q�1 ¼
ðEa2T=CÞfð6=x2Þ � ð6=x3Þ½sinhðxÞ þ sinðxÞ= coshðxÞ þ cosðxÞ�g

1þ ðF=F crÞ
. (9)

The above expression has been derived for a simply supported beam but it can be extended for any
boundary condition. For clamped–clamped beam, the solution for natural frequency [12] is given as

on ¼ o0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 0:97

F

F cr

r
. (10)

Similarly, natural frequency for other boundary conditions also can be expressed as

on ¼ o0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a

F

F cr

� �s
, (11)

where a is factor which depends on boundary condition. Using this, expression for thermo-elastic damping can
also be extended for other boundary conditions using factor a:

Q�1 ¼
Ea2T=Cfð6=x2Þ � ð6=x3Þ½sinhðxÞ þ sinðxÞ= coshðxÞ þ cosðxÞ�g

1þ ðF=F crÞ
, (12)

3. Results and discussion

The effect of a second elastic field due to the axial force F is clearly seen in Eq. (12), where the Q factor
increases for any positive value of F. It also indicates the presence of a discontinuity in case of compressive
critical buckling force Fcr. This expression in the limiting case of F ¼ 0 turns out to be same as
Lifshitz–Roukes expression for thermo-elastic damping. Value of ‘a’ is 1 for simply supported beams, 0.925
for cantilever beams and 0.97 [12] for clamped–clamped beams. Fig. 1 shows the normalized thermo-elastic
damping against the factor x, which is a function of natural frequency, thermal diffusivity and thickness of the
resonator as given in Eq. (7). It is observed from Fig. 1 that for same value of x, stressed resonator will have
significantly less thermo-elastic damping compared to its unstressed counterpart. Several orders of magnitude
improvement is expected for a modest tensile stress (10 times the critical buckling stress in a flexural
resonator).
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Fig. 2. Variation of the quality factor with respect to applied axial stress (expressed in form of the natural frequency).

Fig. 1. Variation of normalized thermo-elastic damping due to a secondary axial stress, solid line indicates unstressed beam, dashed-stress

equal to critical stress and dotted line indicates stress 10 times critical stress.
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The new model for thermo-elastic damping also allows the quality factor to be expressed in terms of
dimensional properties. This is given by the following equations:

on ¼ b1
d

l2

ffiffiffiffi
E

r

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a

s
a1p2E

l

d

� �2
s

, (13)

Q�1 ¼
Ea2T=Cfð6=x2Þ � ð6=x3Þ½sinhðxÞ þ sinðxÞ= coshðxÞ þ cosðxÞ�g

1þ aðs=a1p2EÞðl=dÞ2
, (14)

where a1 and a are factors that represent the boundary conditions. It is important to note that the relationship
between beam geometry and the quality factor is derived in an exact form. Eq. (14) is therefore expected to be
a useful design tool for micro- or nano-resonators, giving the designer choice over the resonator geometry.

In order to compare the model performance with experimental results available in literature, the quality
factor of a silicon nitride beam resonator with dimensions l ¼ 10 mm, b ¼ 1 mm and d ¼ 110 nm [15] was
computed. Silicon nitride beams are commonly fabricated by LPCVD [16] type deposition and their properties
are well known in the literature [16–18]. The results are shown in Fig. 2, where the theoretical quality factor
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considering thermo-elastic damping alone is plotted as a function of the resonant frequency, which itself is a
function of the applied axial stress. Here, the resonant frequency increases from 10MHz for an unstressed
beam to 40MHz for applied axial stress of 20 times the critical buckling stress. Interestingly, the exact
formulation for thermo-elastic damping [5] predicts decrease in quality factor, which apparently is not the case
shown in Fig. 2. Here, the quality factor increases in a linear fashion with respect to the applied stress,
as predicted by Eq. (12).

4. Conclusion

A new concept for reducing thermo-elastic damping in vibrating beams by introducing a secondary elastic
field is proposed. The concept is implemented for a flexural resonator undergoing a static axial stress and an
exact expression for thermo-elastic damping is developed. The new model suggests simultaneous increase in
quality factor and resonant frequency under the applied axial stress for all aspect ratios. It also quantifies the
quality factor corresponding to thermo-elastic damping in terms of the vibrating beam geometry and therefore
will be useful in design of micro-/nano-resonators for reduced thermo-elastic damping and quantitative
prediction of the increase in quality factor as an axial stress is applied.
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